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For a large class of repulsive interaction models, the Mayer cluster integrals can be transformed into a
tridiagonal real symmetric matrix Rmn, whose elements converge to two constants. This allows for an effective
extrapolation of the equation of state for these models. Due to a nearby �nonphysical� singularity on the
negative real z axis, standard methods �e.g., Padé approximants based on the cluster integrals expansion� fail to
capture the behavior of these models near the ordering transition, and, in particular, do not detect the critical
point. A recent work �E. Eisenberg and A. Baram, Proc. Natl. Acad. Sci. U.S.A. 104, 5755 �2007�� has shown
that the critical exponents � and ��, characterizing the singularity of the density as a function of the activity,
can be exactly calculated if the decay of the R matrix elements to their asymptotic constant follows a 1 /n2 law.
Here we employ renormalization group �RG� arguments to extend this result and analyze cases for which the
asymptotic approach of the R matrix elements toward their limiting value is of a more general form. The
relevant asymptotic correction terms �in RG sense� are identified, and we then present a corrected exact
formula for the critical exponents. We identify the limits of usage of the formula and demonstrate one physical
model, which is beyond its range of validity. The formula is validated numerically and then applied to analyze
a number of concrete physical models.
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I. INTRODUCTION

It is often said that the mechanism underlying phase tran-
sitions is the decrease of internal energy in the ordered
phase. However, it has been shown long ago that melting is
dominated by the strong short ranged repulsive forces, and
the related solid-fluid transitions are entropy driven. Accord-
ingly, purely repulsive models have been often used to study
the fluid equation of state toward the structural ordering tran-
sition. The most striking demonstration of these observations
is given by the family of hard-core models, which have long
played a central role in this field. In these models, particles
interact exclusively through an extended hard core, and there
is no temperature scale associated with the potential �inter-
action energy is either infinite inside the exclusion region or
zero outside�. Thus, temperature and energy play no role, and
the dynamics is completely determined by entropy consider-
ations. Yet, these models exhibit various types of ordering
transitions. They include, for example, the famous isotropic-
nematic transition in a three dimensional system of thin hard
rods �1,2�, as well as the extensively studied hard spheres
models �3–7�, undergoing a first-order fluid-solid transition
for d�3 and, presumably, a second-order transition from a
fluid to the hexatic phase �8,9�. These models are purely
entropy driven, yet they capture the essential molecular
mechanism that drives freezing transitions.

A complete description of the fluid phase is provided by
the Mayer cluster series in terms of the activity, z
=exp����, where � is the chemical potential. For purely
repulsive potentials, the radius of convergence of the cluster
series is known to be determined by a singularity on the
negative real axis, z=−z0, typically very close to the origin

�10�. Near this point, the singular part of the density is char-
acterized by the critical exponent �,

�sing�z� � �z + z0��.

As a result of this singularity, the radius of convergence of
the Mayer series includes only the extremely low density
regime, and the fluid-solid transition is way beyond it. It is
therefore desirable to find a way to extend the information
contained in the cluster integrals series to provide informa-
tion about the behavior of the system close to the ordering
transition region. In particular, one is interested in the critical
exponent �� characterizing the density near the physical ter-
mination point of the fluid zt,

�sing�z� � �z − zt���.

It has been shown that this goal may be achieved by trans-
forming the cluster integral series into a tridiagonal symmet-
ric matrix form �11�. The matrix elements Rnm adopt a clear
asymptotic form, and converge extremely fast to two differ-
ent constants: A �off-diagonal� and B �diagonal�. This fact
can then be utilized to obtain good approximants for the fluid
density far outside of the convergence circle of the power
series �12–14�. Like Padé methods, these approximants are
consistent with the known elements to all available orders.
However, the R matrix scheme seems to fit much better
purely repulsive systems, as it incorporates the existence of
two singular points on the real axis �15–17�. Yet, a major
shortcoming of this approach was its failure at the critical
regime. It is easy to prove �see below� that tridiagonal R
matrices described at the asymptote by two constant values
lead to universal critical exponents �=��=1 /2 at both sin-
gularities, which are obviously wrong. Thus, the above ap-
proach fails when one is in close vicinity to the transition
region.
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A partial solution for this problem was recently found,
noticing that for many of the studied models not only the
matrix element approach a constant but also the asymptotic
correction to the constant takes a universal form, following a
1 /n2 decay of the elements to their constant asymptotic value
�18�,

Bn � Rn,n = B + b/n2,

An+1/2 � Rn,n+1 = A + a/�n + 1/2�2. �1�

Under these circumstances, one is able to analytically calcu-
late the critical exponents at both fluid termination point �the
physical one, at the ordering transition or at the termination
of the supercooled fluid, and the nonphysical one on the
negative real z-axis�. These exponents depend on the ampli-
tudes of the 1 /n2 corrections, and generally deviate from 1/2.
This approach works satisfactorily for many models and tests
well against the known result for the nonphysical singularity
that predicts universal critical exponents depending on di-
mensionality alone.

Yet, while many models indeed show this simple 1 /n2

decay, we have found out that some other models exhibit
different asymptotic behavior. For example, the R matrix el-
ements of the hard-hexagons model �19� are presented in
Fig. 1. As this is an exactly solvable model, one is able to
produce a large number of cluster integrals. Doing so, we
note that while the first few elements seem to follow the 1 /n2

rule, the asymptotic behavior is quite different. The matrix

elements do converge to two constants as expected, but their
leading asymptotic behavior follows an oscillatory 1 /n decay
rather than the above mentioned 1 /n2. This finding raises the
question of how to deal with R matrices whose correction
deviates from form �1�. Moreover, it sheds doubt on the ap-
plicability of former results to other models where only a
few cluster integrals are known: one may argue that the hard-
hexagons example shows that the 1 /n2 behavior is only a
transient one, and the true asymptotics of all these models is
different. Indeed, extension of the available series to higher
coefficients of the Mayer expansion allowed us to see in a
number of additional models that the seeming 1 /n2 behavior
is accompanied by additional corrections, including an oscil-
latory cos�qn� /n term that becomes dominant in the asymp-
tote. We observed such oscillations, for example, for hard-
core two-dimensional �2D� square lattice gas with exclusion
shell up to second �N2 model�, third �N3 model�, and fourth
�N4 model� nearest neighbors.

As this oscillatory term dominates for large n, the validity
of the results of �18� is put in question. Therefore, we set out
to study the effect of this additional correction term on the
critical behavior of the equation of state. Here we extend the
previous result and explore the case of matrix elements tak-
ing the asymptotic form,

Rn,n = B +
b

n2 + b�
cos�qn�

n
,

Rn,n+1 = A +
a

�n + 1/2�2 + a�
cos�q�n + 1/2��

n + 1/2
. �2�

Using an analytical renormalization group–like decimation
scheme, we show that in this case the critical exponents are
given by

� =
1

2
�1 −

4�2a + b�
A

−
�2a� cos�q/2� + b��2

�1 − cos�q��A2 ,

�� =
1

2
�1 −

4�2a − b�
A

−
�2a� cos�q/2� − b��2

�1 − cos�q��A2 , �3�

thus generalizing the results of �18�. We also discuss the
possible effect of other kinds of corrections, and conclude
that they do not affect the critical exponent as long as the
spectrum of the matrix remains intact. We verify the result by
extensive numerical study of artificial models and by analy-
sis of the exactly solvable hard-hexagons model. The next-
nearest-neighbor exclusion model on a triangular lattice is
discussed as an example in which the spectrum does not
remain intact and our approach breaks down. Finally, we
apply our formula to the two models that have been recently
studied by means of Monte Carlo �MC� simulations �20�: the
hard-core two-dimensional square lattice gas with exclusion
shell up to fourth �N4 model� and fifth �N5 model� nearest
neighbors.

II. ANALYSIS

For the sake of completeness, we start with a brief review
of the approach presented in �18�. The Mayer cluster inte-
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FIG. 1. �Color online� Hard hexagons matrix elements, fitted to
form �2�, with A=�125 /4, a=0.0027, a�=−0.063, B=5.5, b
=0.627, b�=0.129, and q=0.36.
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grals provide a low-z expansion for the density of a fluid,

��z� = �
n=1

�

nbnzn, �4�

where bn is the nth Mayer cluster integral. It is always pos-
sible �see Appendix A for an explicit construction� to define
a tridiagonal symmetric R matrix, which satisfies the condi-
tion �n�1�,

�Rn�11 = �− 1�n�n + 1�bn+1. �5�

The density may then be expressed in terms of R,

��z� = �
n=1

�

nbnzn = �
n=0

�

�− 1�nzn+1�Rn�11 = z�I + zR�11
−1. �6�

Alternatively, the matrix inversion in the previous equation
may be expressed in terms of the spectrum � of the R matrix,
and the corresponding eigenvectors 	���,

��z� = �
�

	1���2

z−1 + �
, �7�

where 	1��� is the first component of the 	��� vector.
The reciprocals of the eigenvalues of this matrix are the

Yang-Lee zeros of the grand-canonical partition function.
For all purely repulsive models studied to date, the R matri-
ces are real valued, and thus their eigenvalues are also real
�R is symmetric by construction�. There is yet no proof that
this is indeed the case for all such models, but construction
of R matrices for dozens of different lattice and continuum
purely repulsive models �see, e.g., �14,15,18� and this work�
provides strong evidence for it: in all cases studied the ma-
trix elements were real to all orders calculated. Furthermore,
as mentioned above, the matrix elements in all models stud-
ied adopt a clear asymptotic pattern, converging quickly to a
�real� constant. Therefore the possibility that some higher
order element may become complex seems improbable.

For these real R matrices the spectrum of the matrix lies
on the real axis in an interval �−zt

−1 ,z0
−1� �and the Yang-Lee

zeros lie on two intervals along the real activity axis:
z
−z0 and z�zt�. It follows from Eq. �7� that the density
��z� has two singular points at z values for which −z−1 coin-
cides with the spectrum edges of the R matrix, leading to
vanishing of the denominator on the right-hand side. The
critical behavior of the density ��z� near the physical and
nonphysical singularities is therefore determined by the
structure of the residue 	1��� at the spectrum edges.

For example, we look at a matrix with two constants
along the three main diagonals, B �diagonal� and A
�off-diagonal�. The eigenvalues are ��k�=B+2A cos�k�
�0
k
�� and the eigenvectors are 	n���k��=sin�nk�. The
critical points are then

− z0
−1 = − �B + 2A�

�corresponding to k=0�, and

zt
−1 = 2A − B

�k=��, where 	1�k��	1���k��	k and 	1�k��	1���k��
	�k−�� respectively. Expanding the integral in Eq. �7� for

z	−z0 and z	zt one finds that the density terminates at both
ends with a square-root singularity.

We now consider a general R matrix taking the form

Bn � Rn,n = B + Bn,

An+1/2 � Rn,n+1 = A + An+1/2. �8�

The critical behavior is determined by the long-wavelength,
slowly varying, eigenvectors and therefore the eigenvalue
equation �we treat the nonphysical critical point only, analy-
sis of physical point is essentially identical�

An−1/2	n−1 + Bn	n + An+1/2	n+1 = �	n �9�

may be studied in the continuum limit, taking the form of a
differential equation in the variable x=kn. For general case
�8�, the discrete Eq. �9� transform into

f��x� + f�x� +
�Bn + An−1/2 + An+1/2�n2

Ax2 f�x� = 0. �10�

As long as the corrections B and A are small enough �see
below� the spectrum does not change. The eigenvectors, nev-
ertheless, are modified. In �18� the R matrix was assumed to
take form �1�, and then the differential Eq. �10� is reduced
into a Bessel equation. A closed form for the eigenvectors is
available, and one obtains the critical behavior of the density
near the two branch points ��zc�−��z�= �zc−z�� �or ��z�
= �zc−z�−� if the density diverges at criticality, such as the
case of the nonphysical singularity in d�2�. The critical
exponents are given by

� =
1

2
�1 − 4

2a − b

A
, �� =

1

2
�1 − 4

2a + b

A
�11�

where � ���� is the exponent of the nonphysical �physical�
branch point.

This approach, however, cannot be extended straightfor-
wardly to study a general correction to the matrix elements:
while for 1 /n2 corrections �Eq. �10�� can be written in terms
of x=kn alone, independently of k, a general correction term
results in a k-dependent differential equation. More impor-
tantly, considering terms O�1 /n3� in the differential equation
approach leads to an essential singularity at the origin, result-
ing in transition layer solutions and complicated behavior at
the origin. These terms indeed show up when one analyzes
real R matrices �see below for the N4 and N5 models�. Third,
the mapping to a differential equation relies on the slow
variation of the eigenvectors and is bound to fail for correc-
tion terms of form �2� that induce an intrinsic “length” scale
�on the n axis� into the problem.

We thus present here a complementary approach to study
the general correction term, which is based on the idea of
renormalization group �RG�. In their discrete form, the ei-
genvalue �Eq. �9�� form an infinite linear system of equa-
tions. Since the system is tridiagonal, it is quite easy to elimi-
nate half of the variables, e.g., all variables 	n for n even.
This effectively removes half of the rows and half of the
columns in the matrix, “tracing out” half of the degrees of
freedom in the problem. One obtains a new tridiagonal sys-
tem of equations, or a renormalized R matrix, with the same
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eigenvalues and new vectors 	̃�k� that are simply related to

the former ones 	̃n�k�=	2n−1�k�. In particular, 	̃1�k�=	1�k�.
The density as a function of z is fully determined by the
spectrum and 	1��� through Eq. �7�. Thus, the renormalized
R matrix may be utilized to generate the same equation of
state and the same critical behavior as the original one. Ex-
plicitly, the reduced eigenvalue equation after one such deci-
mation process takes the form �n odd; An+1/2=Bn=0 for n
�0�

An−3/2An−1/2

� − Bn−1
	n−2 + 
 An−1/2

2

� − Bn−1
+

An+1/2
2

� − Bn+1
+ Bn�	n

+
An+1/2An+3/2

� − Bn+1
	n+2 = �	n. �12�

Accordingly, the R matrix elements transform, under such
decimation, according to

Bn� =
A2n−3/2

2

� − B2n−2
+

A2n−1/2
2

� − B2n
+ B2n−1, �13�

An+1/2� =
A2n−1/2A2n+1/2

� − B2n
. �14�

In the transformed linear system 	̃n is in fact 	2n−1, so for a
given functional form for An and Bn one should change vari-
ables n�→2n−1. Note that the renormalization transforma-
tion is � dependent. Since the density in the vicinity of the
critical points is determined by the spectrum edges only, this
poses no difficulty.

As a first demonstration of this RG scheme, one may look
at the solvable case of 1 /n2 correction. Substituting An=A
+a /n2, Bn=B+b /n2 and �=2A+B into Eq. �12�, one obtains

An+1/2 → A/2 +
1

8n2 �4a + b� + O
 1

n3� ,

Bn → �A + B� +
1

n2 �a/2 + 3b/8� + O
 1

n3� . �15�

Clearly, the spectrum edge, defined by the asymptotic value
of An−1/2+An+1/2+Bn to be −z0=−�2A+B�−1 is conserved un-
der the decimation. Moreover, the correction term �An−1/2
+An+1/2+Bn� /A which appears in the differential equation
and determines the critical exponent by Eq. �11�, is also
stable under the transformation and remains equal to �2a
+b� /An2, as expected.

Applying the same transformation for corrections of the
form 1 /n� i.e., An=A+a� /n�, Bn=B+b� /n�, results in

1

A
�An−1/2 + An+1/2 + Bn� →

1

2�−2

2a� + b�

A

1

n� . �16�

Therefore, one may conclude that for ��2 the correction
term in differential Eq. �10� is suppressed by successive ap-
plications of the RG decimation transformations. Therefore,
these correction terms are irrelevant in determining the criti-
cal exponents.

We now employ the RG scheme to study the case of main
interest: 1 /n-modulated oscillations, as observed for the
hard-hexagons model

An+1/2 = A + a� cos�q�n + 1/2��/�n + 1/2� ,

Bn = B + b� cos�qn�/n . �17�

The transformation of the differential equation correction
term �An−1/2+An+1/2+Bn� /A upon one decimation step is
given by

1

A
�An−1/2 + An+1/2 + Bn�

=
2a� cos�q/2� + b�

A

→
�2a� cos�q/2� + b���1 + cos�q��cos�2qn�

An

+
�2a� cos�q/2� + b��2

2A2

1

n2 + O„cos�2q�/n2,1/n3
… .

�18�

Obviously, the real-space renormalization process induces a
change in the frequencies q→2q. In addition, �i� the
cos�qn� /n term is multiplied by a factor of �1+cos�q��, and
three more terms emerge: �ii� a new 1 /n2 term, �iii� terms
O(cos�2qn� /n2) and �iv� terms O�1 /n3�. Iterating this proce-
dure N times, one obtains from �i� �2a+b�→ �2a�
+b���n=1

N �1+cos�2n−1q��. The newly emerging 1 /n2 terms
�ii� combine to take the form �2a�+b��2

16A �n=0
N �m=1

n �1
+cos�2m−1q��2. The first term gets exponentially small for
large N: �n=1

N �1+cos�2n−1q���4−N �see Appendix B�, and
thus could be neglected. The sum over the products in the
second term converges to �1−cos�q��−1 �see Appendix B�.
This second term does affects the critical behavior as it adds
up to the 1 /n2 terms in the R matrix. The 1 /n3 terms �iii�
may be neglected as their amplitude decreases: each existing
1 /n3 term decreases by factor 2 upon an RG step, according
to Eq. �16�. While a new term is being added from transfor-
mation �12�, the sum of all contributions still decreases ex-
ponentially with the number N of RG steps. The cos�qn� /n2

terms �iv� transform under decimation in an analogous way
to the original cos�qn� /n term: they get multiplied by a fac-
tor 1+cos�q� resulting in an exponential decay, and give rise
to new O�1 /n4� terms �analogous to the O�1 /n2� terms gen-
erated from decimation of the cos�qn� /n�, as well as faster
decreasing terms. Again, the 1 /n4 exponentially decrease
through decimation by Eq. �16� and are therefore neglected.
In summary, the net effect of the cos�qn� /n term after a large
number of RG steps is the creation of a new 1 /n2 term.
These terms, emerging from the decimation process, can then
be analyzed using the mapping to the Bessel differential
equation as described in �18�.

Up to this point we treated the pure cos�qn� /n case. Simi-
lar analysis may be done for the mixed case, where both
cos�qn� /n and 1 /n2 terms are present �as happens for the
physical models to be discussed�. It turns out that transfor-
mation Eq. �12� does mix the correction terms, as the nu-
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merator of �AnAm� / ��−Bl� is quadratic in the off-diagonal
elements. However, the mixed terms will follow the form
cos�qn� /n3 which can be ignored based on arguments similar
to those presented above for the cos�qn� /n2 terms. Multipli-
cative cross terms could be relevant �in RG sense� only if
they decay O�1 /n2� or slower. Thus, one may simply add the
original 1 /n2 terms to those emerging from RG. Collecting
the O�1 /n2� terms originating from both the functional form
of the matrix elements and the decimation process for oscil-
latory terms, one obtains closed form �3� for the critical ex-
ponents in the general case �having both cos�qn� /n terms and
1 /n2 terms�.

We note that the critical exponents in Eq. �3� do not de-
pend on B. This can be readily understood looking at Eq. �7�.
A change in B results in a constant addition to the whole
spectrum of R, without modifying its eigenvectors. Looking
at expression �7� for the density, it becomes clear that the
effect of a constant added to the eigenvalues of R on the
density is equivalent to a constant shift in z−1. That is, if the
density of the B=0 matrix is �0�z�, the density for finite B,
��z ;B�, is simply

��z;B� = �0
 1

z−1 + B
� .

Therefore, the value of B affects the location of the critical
points, but do not change the critical exponents.

Finally, we note that if the amplitude of the correction to
a constant matrix is strong enough, one obtains from Eq. �3�
an imaginary value for �. When this happens, both solutions
of the differential Eq. �10� diverge at the origin �21�. Conse-
quently, there are no solutions to eigenvalue problem �9� for
k	0, or �	2A+B. In other words, a perturbation of the
constant matrix which is strong enough to make � imaginary
modifies the spectrum of the matrix, such that the spectrum
edge shifts from 2A+B. In these cases the critical point is not
given by −z0=−�2A+B�−1. Similarly, whenever �� becomes
imaginary, the physical singularity shifts from zt= �2A−B�−1.
In both cases, the corresponding critical exponents are not
given by Eq. �3�. This scenario is realized for the next-
nearest-neighbor exclusion model on the triangular lattice
�see below�.

III. NUMERICAL STUDY

In order to test our results, we have constructed various
tridiagonal symmetric R matrices with prescribed matrix-
elements asymptotic form, and compared prediction �3� with
the critical behavior as measured from the equations of state
calculated by Eq. �6� for these models. First, we looked at
matrices obeying Eq. �17�, with the parameters A=16 and
B=31 �zt=1�, and various combinations of a�, b� and q. We
have also modified A while keeping the other parameters
fixed to check the A dependence. For these R matrices, one is
able to consider as many coefficients as desired. Thus, the
size of the submatrices studied is considerable, and the ma-
trix inversion of Eq. �6� is costly. Instead, the density � can
be equivalently calculated using the continued fraction rep-
resentation

��z� =
1

R1,1 + 1/z − R1,2
2 1

R2,2 + 1/z − R2,3
2 1

R3,3 + 1/z − R3,4
2
¯

�19�

which typically converges rather quickly �except for the im-
mediate vicinity of the transition point�. Figure 2 compares
the critical exponent �� obtained by fitting the density as
given by Eq. �19� for z close to the termination point zt with
the theoretical prediction of Eq. �3�. The results are in excel-
lent agreement, except for a few points where the numerical
calculation of the density was difficult due to slow conver-
gence of the continued fraction in the immediate vicinity of
the critical point. We also calculated the density for R matri-
ces with both 1 /n2 and cos�n� /n corrections, i.e., following
Eq. �2�. The agreement between the theoretical prediction of
Eq. �3� and the measured critical exponent was again excel-
lent. Another special case we checked was that of a 1 /n3

correction. This is the most dominant correction for which
we predict no change to the critical exponent of the const
matrix. Using the same constants A and B, we looked at
correction amplitudes up to a�=30, and verified that the criti-
cal exponent indeed does not change: ��=0.5 as expected.

IV. APPLICATIONS TO PHYSICAL MODELS

Analysis of the R matrix as detailed above may be used to
predict the critical behavior of all models with purely repul-
sive interactions. Our results apply equally to continuum and
lattice models in all dimensions. Here we demonstrate appli-
cations to a number of 2D hard-core lattice-gas models.

For all the models to follow, we have calculated the clus-
ter integrals to a high order �in order to calculate the R ma-
trix�. It is natural to compare standard series analysis meth-
ods �22� to the results to be obtained from the R matrix. We
have applied the ratio method, Dlog Padé and differential
approximants to the models to follow. In general, ratio analy-
sis of the series provide a rather exact estimate of the non-
physical singularity location z0 and the related �=1 /6, but

FIG. 2. �Color online� Critical exponents as measured from
equation of state �19�, compared with exact prediction �3� for vari-
ous choices of cos�qn� /n corrections.

CRITICAL EXPONENTS FROM CLUSTER COEFFICIENTS PHYSICAL REVIEW E 80, 031126 �2009�

031126-5



says nothing about the physically relevant zt and ��. Dlog
Padé approximants again converge nicely to predict a singu-
larity at −z0 but show no consistent pole anywhere on the
positive real z-axis. Similar results were obtained using the
differential approximants. Overall, these methods do better
then the R matrix for the nonphysical singularity. The reason
for these failures is the existence of a branch-cut singularity
located so close to the origin, which makes the physical sin-
gularity, typically much further away, undetectable by these
methods. The R matrix, which incorporates the branch cut
naturally, is more successful.

Even though standard series analysis methods are often
superior to the R matrix as a means to analyze the nonphysi-
cal singularity, we still include in the following the R-matrix
results for both singularities. The reason is that unlike stan-
dard methods, R matrix is expected to work equally well for
both termination points. The accuracy of both exponents �
and �� depends roughly equally on the quality of the fitting
parameters describing the asymptotic behavior of the matrix
elements. Thus, our R matrix results for � should not be
taken as the yardstick for measuring R matrix vs Dlog Padé,
but rather as a measure of the accuracy of the R matrix itself,
as one expects the same degree of accuracy for both expo-
nents calculated.

A. Hard hexagons model

The hard-hexagons model �lattice gas on a triangular lat-
tice with nearest-neighbors exclusion� was solved exactly by
Baxter �19�. This allows us to calculate many cluster coeffi-
cients and matrix elements. The density in this model is
given exactly by the relation �23�

�11�� − 1�z4 − �5�22�7 − 77�6 + 165�5 − 220�4 + 165�3

− 66�2 + 13� − 1�z3 + �2�� − 1�2�119�8 − 476�7 + 689�6

− 401�5 − 6�4 + 125�3 − 63�2 + 13� − 1�z2

+ �� − 1�5�22�7 − 77�6 + 165�5 − 220�4 + 165�3

− 66�2 + 13� − 1�z + ��� − 1�11 = 0. �20�

Using this relation, one is able to expand the density in
power series of the activity z and extract the cluster integrals
nbn. Employing infinite-precision integer computation we
extended the 24 elements calculated in �23� to 1100 ele-
ments, enabling the construction of the first 550 diagonal and
off-diagonal elements of the R matrix �24�. These allowed
unambiguous determination of the asymptotic form of these
elements. One can observe in Fig. 1 clear oscillations of the
matrix elements. Therefore application of the formula pre-
sented in �18�, which is based on a O�n−2� correction term,
was doubtful. Based on the analysis above and extended for-
mula �3�, one may calculate the critical exponent from fitting
the matrix elements of the hard-hexagons model. This results
in ��=0.6662 where the exact result is ��=2 /3. Note that
the early version of Eq. �3� as presented in �18� gives in this
case ��=0.6902. The result for the nonphysical critical ex-
ponent calculated based on our R matrix analysis and Eq. �3�
is �=0.1655, which compares well to the exact universal
result �=1 /6 �15–17�.

B. Triangular lattice N2 model

Next, we study the triangular lattice N2 model �exclusion
up to the next-nearest neighbor�. This model was long ago
investigated, and early studies suggested that the phase tran-
sition is first order �25–27�. However, later transfer-matrix
analysis �28�, and recent exhaustive MC results �29� con-
cluded that the model undergoes a second-order phase tran-
sition at �c=1.75682�2� and critical density �c=0.180�4�,
and is believed to be part of the q=4 Potts universality class,
with ��=1 /3.

We used the transfer-matrix method to obtain an exact
expansion of the partition function in powers of the activity.
We have constructed transfer matrices for strips with width
up to M =26 �number of symmetry reduced states in the M
=26 matrix is 730 100�. We then constructed the exact low-z
power-series expansion for the density ��z�, the first 17 co-
efficients of which are identical with their bulk values �the
cluster integrals for the models considered henceforth and
the resulting R matrices are given in Tables I and II�. The
difference An−1/2+An+1/2−Bn should converge to 2A−B=zt

−1.
In the absence of oscillatory terms, the slope of this differ-
ence against 1 /n2 determines the critical exponent by Eq.
�3�. As seen in Fig. 3 the matrix elements are well fitted, with
2A−B=0.107�1� and 2a−b=3.61�1�, and extrapolation of An
alone gives A=5.382. Therefore, in this case analysis of the
R matrix shows clearly that 4�2a−b� /A�2.7�1 which
means that Eq. �11� will lead to an imaginary ��. As dis-
cussed above, in such cases the above analysis breaks down
as the spectrum edge shifts from 2A�B. Indeed, for this
model the critical activity as determined by MC studies, zt
=5.794 �29�, deviates significantly from �2A−B�−1=9.35,
clearly demonstrating the spectrum edge shift.

C. Square lattice N4 model

Having tested the limits of the method, we move on to
apply it and examine models in which the critical behavior is
not known. The N4 model on a square lattice �hard-core
exclusion of all neighbors up to the fourth order� was first
studied using transfer-matrix methods �27,30�. Recently, it
was revisited, employing MC simulations �20�. It is believed
to undergo a second-order fluid-solid transition of the Ising
universality class. The critical chemical potential was found
to be �c=4.705 with a critical density �c=0.110 �20�, where
the closest packing density is �cp=0.125.

Here too, we used the transfer-matrix method to obtain an
exact expansion of the partition function and expand the den-
sity in powers of the activity. We have constructed transfer
matrices for strips with width up to M =37. Employing trans-
lational and inversion symmetries, the number of symmetry
reduced states in the M =37 matrix is 4137 859. Using this
matrix, we obtained the first 18 coefficients that are identical
with the bulk values. The diagonal matrix elements take the
form B+b /n2+b� cos�qn+�� /n, while the off-diagonal ones
exhibit no visible oscillations, and are well fitted by the cubic
form A+a /n2+a� /n3 �see Fig. 4�. Based on the fit param-
eters, one is able to predict the nonphysical singularity loca-
tion −z0=−0.0294, which compares well with the value we
obtained from direct ratio analysis of the series −z0
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=−0.029374�1�. The critical exponent at this singularity is
calculated by 3 to be �=0.1891, close to the exact universal
value �=1 /6.

Looking at the physical singularity, one observes 2A−B
=0.015�5�, i.e., �c=4.2�4�, barely consistent with the result
of �20�. While the accuracy in determining the critical activ-
ity is low, the critical density can be determined to much
better accuracy �c=0.112�1�, in good agreement with the
MC results. It is remarkable that we are able to determine to
such accuracy the critical density at the fluid-solid transition
based on the low-density behavior of the fluid alone. The
critical exponent may be found by Eq. �3� to be ��
=0.28�6�. Thus, based on our analysis of the cluster integrals
we can quite safely exclude the possibility of the Ising uni-
versality class, where ��=1. The latter result contradicts the

numerical observations of �20�. Detailed numerical studies of
this model aimed at an accurate calculation of the critical
exponents are required to settle this discrepancy.

D. Square lattice N5 model

Finally, we look at the N5 model on a square lattice �hard-
core exclusion of all neighbors up to the fifth order�. This
model was also recently studied using MC simulations �20�
and found to undergo a weak first-order transition at �c
=5.554. Again, we calculated 18 cluster coefficients using
the transfer-matrix method up to M =37. In this case, one
observes no oscillations, but the R matrix elements exhibit a
strong third-order correction term: An=A+a /n2+a� /n3 and
Bn=B+b /n2+b� /n3 �see Fig. 5�. While the third-order term

TABLE I. Mayer cluster coefficients nbn for various models.

n

N4 N5 Triangular N2

nbn nbn nbn

1 1 1 1

2 −21 −25 −13

3 529 757 205

4 −14457 −24925 −3513

5 413916 860526 63116

6 −12213795 −30632263 −1169197

7 368115798 1114013874 22128177

8 −11270182473 −41160109013 −425493585

9 349244255338 1539411287905 8282214430

10 −10926999690716 −58134505912850 −162784518218

11 344563541226829 2212737992414500 3224828597398

12 −10935950490228951 −84773398978877767 −64304659129557

13 348996298644804045 3265709152114882760 1289359180917536

14 −11189659831729226400 −126396751968240912540 −25974798852799663

15 360221541077745515049 4911995555642255534862 525411435083794040

16 −11637415720384495480425 −191566536035975787182277 −10665744051246882913

17 377133138423022266192030 7494404630272576450625728 217191426304757630038

18 −12255532866263525229229458 −294007038999894901106531809

TABLE II. R matrix elements for various models.

n

N4 N5 Triangular N2

Bn An Bn An Bn An

1 21 9.3808315196 25 11.489125293 13 6

2 17.045454545 8.7248457800 20.454545455 10.570731201 10.555555556 5.5674871873

3 17.024781724 8.6098449927 20.518434015 10.405877593 10.550189740 5.4798922624

4 17.018848337 8.5688057487 20.535452306 10.348827163 10.576974307 5.4386602176

5 17.017061106 8.5493273256 20.540912637 10.322722326 10.600981921 5.4160504788

6 17.016534640 8.5385152615 20.543142266 10.308577639 10.615727211 5.4037594351

7 17.016426427 8.5318795598 20.544349327 10.299999108 10.622716309 5.3973336220

8 17.016464632 8.5275092336 20.545165481 10.294371298 10.625196191 5.3938592930

9 17.016552228 20.545790085
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is stronger than the second-order one in the regime studied,
our RG analysis allows us to conclude that the 1 /n3 correc-
tion does not change the critical exponents and we can use
Eq. �11�. The nonphysical exponent � calculated from the
above parameters, �=0.1718 is in reasonable agreement with
the exact universal result 1/6. Similar calculation for the
physical singularity yields �=0.1621. The accuracy of the
latter result might suffer from the lack of insufficient cluster
integrals. However, one can safely say that the diagonal 1 /n2

amplitude b is small, and thus the physical exponent ��
would not deviate much from �, and should satisfy ��
�1 /6. The critical activity zt= �2A−B�−1 is estimated to be
zt=166, but is highly sensitive to small errors in A and B and
might be very well equal or higher than the one reported in
�20� �zc=258�. If zt�zc then the critical point we found cor-
responds to the termination of the supercooled fluid phase.
This scenario is discussed in �31� and was suggested to be
related to a glass transition �18,31�.

V. CONCLUSION

The R matrix representation of the Mayer cluster integrals
converges very quickly to its asymptotic form. It therefore
provides a powerful tool for extrapolating the low-z expan-
sion of the fluid equation of state to cover the full fluid
regime. In this work we analyze the analytic properties of
this equation of state in the vicinity of the critical points. It is
shown that not only the location of the critical points, but
also the critical exponents can be determined if one identifies
correctly the asymptotic behavior of the R matrix elements.
A number of correction forms are analyzed, most of which
are shown by RG arguments to be irrelevant for the critical
behavior. Thus, we provide an exact formula for the critical
exponents, depending on a relatively few parameters charac-
terizing the functional dependence of the matrix elements.
Application of this method to a number of lattice-gas models
results in partial agreement with recent MC studies. Analysis
of the discrepancies through an extensive MC study is left
for future work.
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APPENDIX A: CONSTRUCTION OF THE R MATRIX

Here we give an explicit recursive construction of a tridi-
agonal symmetric R matrix that satisfies Eq. �5�. First, assign

R11 = − 2b2.

Assuming all elements Rij are known for 1� i, j�m �and
Eq. �5� is satisfied for n�2m�, we construct Rm,m+1 and
Rm+1,m+1 as follows:

Define P to be the m�m leading submatrix of R, i.e., the
first m rows and first m columns of R. The next off-diagonal
element is given by

0 0.05 0.1 0.15 0.2 0.25 0.3
1/n

2

0

0.2

0.4

0.6

0.8

1

1.2
A

n-
1/

2+
A

n+
1/

2-B
n

R Matrix Elements
Fitted Asymptote

FIG. 3. �Color online� Triangular N2 matrix elements. The dif-
ference An+1/2−Bn+An+1/2 extrapolates to 0.107�1�, much lower
than 1 /zt=0.1726. The slope with respect to n−2 is 3.61�1�, much
larger than A /4. These two observations are consistent with a spec-
trum edge shift.

2 4 6 8
n

17

17.5

18

18.5
R Matrix B

n
R Matrix 2A

n
Fitted Asymptote

FIG. 4. �Color online� N4 matrix elements. The diagonal terms
are fitted to functional form �2�: B=17.0121, b=0.19, b�=0.029,
and q=0.295. The off-diagonal term fit well Eq. �1� with an added
cubic correction a� /n3: 2A=17.0316, 2a=1.634, 2a�=0, and 2a�
=0.0957.

2 4 6 8
n

21

22

23

R Matrix B
n

R Matrix A
n

Fitted Asymptote

FIG. 5. �Color online� N5 matrix elements. Diagonal and off-
diagonal terms fit well �Eq. �1�� with an added cubic correction
b� /n3 �a� /n3�: B=20.547, b=−0.0166, b�=−0.706. 2A=20.553,
2a=2.28, and 2a�=0.143.
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Rm,m+1
2 = Rm+1,m

2 =
�2m + 1�b2m+1 − �P2m�11

�Pm−1�1m
2 .

Now define Q to be the �m+1�� �m+1� leading submatrix of
R, with zero as its m+1, m+1 element. The next diagonal
element is then given by

Rm+1,m+1 =
− �2m + 2�b2m+2 − �Q2m+1�11

�Qm�1,m+1
2 .

It is easy to see by explicit multiplication that the subma-
trix up to row and column m satisfy Eq. �5� up to n=2m.
Further matrix elements do not affect �Rj�11 for j�n. There-
fore, each additional cluster integral allows for one addi-
tional R matrix elements. It should be pointed out that the
above process is exponentially sensitive to errors. This
means that if one is interested in matrices with m�5 or so,
the cluster integrals used should be exact or at least known to
high accuracy. In addition, the actual construction of R ma-
trices should generally be done using high-accuracy arith-
metic to avoid buildup of round-off errors.

APPENDIX B: USEFUL ASYMPTOTIC IDENTITIES

We first show that

�
j=1

N

�1 + cos�2 j−1q��2 � 4−N �N → �� . �B1�

Taking the logarithm of the product, one obtains 2� j=1
N ln�1

+cos�2 j−1q��. It is easy to see that for q / �2�� irrational, the
sequence 2 jq�mod 2�� is uniformly dense in �0,2��. Thus,
in the limit N→� the sum may be replaced by an integral,

2�
j=1

N

ln�1 + cos�2 j−1q�� = 2N
0

2�

ln�1 + cos�x��dx

= − 2N ln�2� .

Exponentiating the result, one reveals Eq. �B1�.

Second, we show that

f�q� = 1 + �
i=1

�

�
j=1

i

�1 + cos�2 j−1q��2 =
2

1 − cos�q�
. �B2�

It follows from the definition that f�q� satisfies f�q�−1
= �1+cos�q��2f�2q�. This recursion rule is indeed satisfied by
f�q�=2 / �1−cos�q��. All left to be shown is that there is no
other �continuous� solution. Assume there exist two different
solutions f1�q� and f2�q�. Their difference f�q�= f1�q�
− f2�q� then satisfies

f�q� = �1 + cos�q��2f�2q� = f�2nq��
j=1

n

�1 + cos�2 j−1q��2

�B3�

Let q / �2�� be irrational. f is continuous, thus for each �
there exists  such that �q1−q�
→ �f�q1�− f�q��
�. Again
we use the fact that the sequence 2 jq�mod 2�� is uniformly
dense in �0,2�� to deduce that there exists also N such that
�2Nq�mod 2��−q�
 and thus �f�2Nq�−f�q��
�. In fact
there are infinitely many such N’s, so one may find N as large
as required to satisfy the latter inequality, while at the same
time satisfying Eq. �B1�. Employing Eq. �B3� one finds

f�q� = f�2Nq��
j=1

N

�1 + cos�2 j−1q��2 	 4−Nf�2Nq� .

�B4�

That is, �f�2Nq�− f�q����4N−1��f�q���� in contradiction to
the abode, unless f�q�=0. Since this is true for all irrational
q / �2��, the function must vanish identically if continuous.

Q.E.D.

�1� L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 �1949�.
�2� R. Zwanzig, J. Chem. Phys. 39, 1714 �1963�.
�3� B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 �1962�.
�4� W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207

�1957�.
�5� B. J. Alder and T. E. Wainwright, J. Chem. Phys. 33, 1439

�1960�.
�6� W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 �1968�.
�7� P. J. Michels and N. J. Trappaniers, Phys. Lett. A 104, 425

�1984�.
�8� D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457

�1979�.
�9� A. P. Young, Phys. Rev. B 19, 1855 �1979�.

�10� J. Groeneveld, Phys. Lett. 3, 50 �1962�.
�11� A. Baram and J. S. Rowlinson, J. Phys. A 23, L399 �1990�.
�12� A. Baram and M. J. Fixman, J. Chem. Phys. 101, 3172 �1994�.
�13� A. Baram and J. S. Rowlinson, Mol. Phys. 74, 707 �1991�.

�14� E. Eisenberg and A. Baram, Phys. Rev. E 73, 025104�R�
�2006�.

�15� A. Baram and M. Luban, Phys. Rev. A 36, 760 �1987�.
�16� S. N. Lai and M. E. Fisher, J. Chem. Phys. 103, 8144 �1995�.
�17� Y. Park and M. E. Fisher, Phys. Rev. E 60, 6323 �1999�.
�18� E. Eisenberg and A. Baram, Proc. Natl. Acad. Sci. U.S.A. 104,

5755 �2007�.
�19� R. J. Baxter, J. Phys. A 13, L61 �1980�.
�20� H. C. M. Fernandes, J. J. Arenzon, and Y. Levin, J. Chem.

Phys. 126, 114508 �2007�.
�21� T. M. Dunster, SIAM J. Math. Anal. 21, 995 �1990�.
�22� A. J. Guttmann, in Phase Transition and Critical Phenomena,

edited by C. Domb and J. Lebowitz �Academic, New York,
1974�, Vol. 13.

�23� G. S. Joyce, Philos. Trans. R. Soc. London, Ser. A 325, 643
�1988�.

�24� The exact 1100 cluster integrals nbn, and the first 550 R matrix

CRITICAL EXPONENTS FROM CLUSTER COEFFICIENTS PHYSICAL REVIEW E 80, 031126 �2009�

031126-9



elements are available online at http://star.tau.ac.il/~eli/Rmat
�25� J. Orban and A. Bellemans, J. Chem. Phys. 49, 363 �1968�.
�26� L. K. Runnels, J. R. Craig, and H. R. Stereiffer, J. Chem. Phys.

54, 2004 �1971�.
�27� R. M. Nisbet and I. E. Farquhar, Physica �Amsterdam� 76, 283

�1974�.
�28� N. C. Bartelt and T. L. Einstein, Phys. Rev. B 30, 5339 �1984�.
�29� W. Zhang and Y. Deng, Phys. Rev. E 78, 031103 �2008�.
�30� J. Orban, Ph.D. thesis, Universite Libre de Bruxelles, 1969.
�31� E. Eisenberg and A. Baram, Europhys. Lett. 71, 900 �2005�.

Z. ROTMAN AND E. EISENBERG PHYSICAL REVIEW E 80, 031126 �2009�

031126-10


